27 research outputs found

    GALEX Observations of CS and OH Emission in Comet 9P/Tempel 1 During Deep Impact

    Full text link
    GALEX observations of comet 9P/Tempel 1 using the near ultraviolet (NUV) objective grism were made before, during and after the Deep Impact event that occurred on 2005 July 4 at 05:52:03 UT when a 370 kg NASA spacecraft was maneuvered into the path of the comet. The NUV channel provides usable spectral information in a bandpass covering 2000 - 3400 A with a point source spectral resolving power of approximately 100. The primary spectral features in this range include solar continuum scattered from cometary dust and emissions from OH and CS molecular bands centered near 3085 and 2575 A, respectively. In particular, we report the only cometary CS emission detected during this event. The observations allow the evolution of these spectral features to be tracked over the period of the encounter. In general, the NUV emissions observed from Tempel 1 are much fainter than those that have been observed by GALEX from other comets. However, it is possible to derive production rates for the parent molecules of the species detected by GALEX in Tempel 1 and to determine the number of these molecules liberated by the impact. The derived quiescent production rates are Q(H2O) = 6.4e27 molecules/s and Q(CS2) = 6.7e24 molecules/s, while the impact produced an additional 1.6e32 H2O molecules and 1.3e29 CS2 molecules, a similar ratio as in quiescent outgassing.Comment: 15 pages, 4 figures, accepted for publication in the Astrophysical Journa

    Rotational Variation of Daughter Species Production Rates in Comet 103P/Hartley: Implications for the Progeny of Daughter Species and the Degree of Chemical Heterogeneity

    Get PDF
    We present analysis of high spectral resolution optical spectra of Comet 103P/Hartley taken during its Fall 2010 apparition. These spectra include transitions belonging to CN, C2, CH, NH2, and OI. We measure production rates and mixing ratios from these spectra. We find evidence for large changes in production rates (factors of a few) over the course of a nucleus rotation, in agreement with other measurements. We also measure variability with rotational phase in the CN/H2O and C2/CN ratios, which has not been previously reported for any comet. There may also be variability in the NH2/H2O ratio with rotational phase, but this trend is not as clear as for CN/H2O. We interpret the changing mixing ratios as due to H2O and C2 being released primarily from the icy grain halo, while the CN parent molecule comes directly from the nucleus. There is evidence that the CH/CN ratio is higher pre-perihelion than post-perihelion. We conclude that the observed CN and NH2 abundances are consistent with HCN and NH3 being the dominant parent molecules for these species. The C2 and CH abundances are higher than those of candidate parent molecules (C2H2 and CH4 respectively), so there must be another source for these molecules in 103P's coma. Carbonaceous dust grains could serve as this source

    GALEX FUV Observations of Comet C/2004 Q2 (Machholz): The Ionization Lifetime of Carbon

    Full text link
    We present a measurement of the lifetime of ground state atomic carbon, C(^3P), against ionization processes in interplanetary space and compare it to the lifetime expected from the dominant physical processes likely to occur in this medium. Our measurement is based on analysis of a far ultraviolet (FUV) image of comet C/2004 Q2 (Machholz) recorded by the Galaxy Evolution Explorer (GALEX) on 2005 March 1. The bright CI 1561 A and 1657 A multiplets dominate the GALEX FUV band. We used the image to create high S/N radial profiles that extended beyond one million km from the comet nucleus. Our measurements yielded a total carbon lifetime of 7.1 -- 9.6 x 10^5 s (scaled to 1 AU). Which compares favorably to calculations assuming solar photoionization, solar wind proton change exchange and solar wind electron impact ionization are the dominant processes occurring in this medium and that comet Machholz was embedded in the slow solar wind. The shape of the CI profiles inside 3x10^5 km suggests that either the CO lifetime is shorter than previously thought and/or a shorter-lived carbon-bearing parent molecule, such as CH_4 is providing the majority of the carbon in this region of the coma of comet Machholz.Comment: 26 pages, 6 figures, accepted for publication in the Astrophysical Journa

    Optics and Quantum Electronics

    Get PDF
    Contains table of contents for Section 3 and reports on twenty-three research projects.Joint Services Electronics Program Contract DAAL03-92-C-0001U.S. Air Force - Office of Scientific Research Contract F49620-91-C-0091Charles S. Draper Laboratories Contract DL-H-441629MIT Lincoln LaboratoryNational Science Foundation Grant ECS 90-12787Fujitsu LaboratoriesU.S. Navy - Office of Naval Research Grant N00014-92-J-1302National Center for Integrated PhotonicsNational Center for Integrated Photonics TechnologyNational Science Foundation Grant EET 88-15834Joint Services Electronics Program Contract DAAL03-91-C-0001National Science Foundation Fellowship ECS-85-52701U.S. Navy - Office of Naval Research (MGH) Contract N00014-91-C-0084U.S. Navy - Office of Naval Research Grant N00014-91-J-1956National Institutes of Health Grant NIH-5-RO1-GM35459-08Bose CorporationLawrence Livermore National Laboratories Subcontract B160530U.S. Department of Energy Grant DE-FG02-89-ER14012Rockwell International CorporationSpace Exploration AssociatesFuture Energy Applied Technology, Inc

    Metrics for Optimizing Searches for Tidally Decaying Exoplanets

    No full text
    Tidal interactions between short-period exoplanets and their host stars drive orbital decay and have likely led to engulfment of planets by their stars. Precise transit timing surveys, with baselines now spanning decades for some planets, are directly detecting orbital decay for a handful of planets, with corroboration for planetary engulfment coming from independent lines of evidence. More than that, recent observations have perhaps even caught the moment of engulfment for one unfortunate planet. These portentous signs bolster prospects for ongoing surveys, but optimizing such a survey requires considering the astrophysical parameters that give rise to robust timing constraints and large tidal decay rates, as well as how best to schedule observations conducted over many years. The large number of possible targets means it is not feasible to continually observe all planets that might exhibit detectable tidal decay. In this study, we explore astrophysical and observational properties for a short-period exoplanet system that can maximize the likelihood for observing tidally driven transit timing variations. We consider several fiducial observational strategies and real exoplanet systems reported to exhibit decay. We show that moderately frequent (a few transits per year) observations may suffice to detect tidal decay within just a few years. Tidally driven timing variations take time to grow to detectable levels, so we estimate how long that growth takes as a function of timing uncertainties and tidal decay rate and provide thresholds for deciding that tidal decay has been detected

    Neil Gehrels–Swift Observatory’s Ultraviolet/Optical Telescope Observations of Small Bodies in the Solar System

    No full text
    The Neil–Gehrels Swift Observatory has added extensively to our understanding of small bodies in our solar system through its capabilities to rapidly respond to short-live events such as outbursts and collisions, through its near-ultraviolet coverage, and by its ability to track time-dependent changes through monitoring campaigns. These capabilities have enabled many significant studies, including the onset and evolution of different sources of water in comet C/2009 P1 (Garradd), the unprecedented changes in the rotation period of comet 41P/Tuttle–Giacobini–Kresák, near-UV spectroscopic observations of asteroids that can help us understand how their properties evolve over time, and the first observations of the aftermath of a collision between a 100 m sized asteroid and the large primitive asteroid 596 (Scheila). In this review paper, we will highlight some of the observational results of Swift-UVOT in the field of small-body research

    Neil Gehrels–Swift Observatory’s Ultraviolet/Optical Telescope Observations of Small Bodies in the Solar System

    No full text
    The Neil–Gehrels Swift Observatory has added extensively to our understanding of small bodies in our solar system through its capabilities to rapidly respond to short-live events such as outbursts and collisions, through its near-ultraviolet coverage, and by its ability to track time-dependent changes through monitoring campaigns. These capabilities have enabled many significant studies, including the onset and evolution of different sources of water in comet C/2009 P1 (Garradd), the unprecedented changes in the rotation period of comet 41P/Tuttle–Giacobini–Kresák, near-UV spectroscopic observations of asteroids that can help us understand how their properties evolve over time, and the first observations of the aftermath of a collision between a 100 m sized asteroid and the large primitive asteroid 596 (Scheila). In this review paper, we will highlight some of the observational results of Swift-UVOT in the field of small-body research

    LARGE APERTURE O i 6300 8 OBSERVATIONS OF COMET HYAKUTAKE: IMPLICATIONS FOR THE PHOTOCHEMISTRY OF OH AND O i PRODUCTION IN COMET HALE-BOPP

    No full text
    4 km, was unique to that comet, or possibly any comet with such a large production rate
    corecore